Notice
Recent Posts
Recent Comments
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- Absolute
- AGI
- ai
- AI agents
- AI engineer
- AI researcher
- ajax
- algorithm
- Algorithms
- aliases
- Array 객체
- ASI
- bayes' theorem
- Bit
- Blur
- BOM
- bootstrap
- canva
- challenges
- ChatGPT
Archives
- Today
- In Total
목록bayes' theorem (1)
A Joyful AI Research Journey🌳😊
Computing the Posterior Probability Using Bayes' Theorem
To determine P(J∣F,I) the probability Jill Stein spoke the words 'freedom' and 'immigration', we'll apply Bayes' Theorem: P(J∣F,I) =P(J)×P(F∣J)×P(I∣J) / P(F,I) Where: P(J) is the prior probability (the overall likelihood of Jill Stein giving a speech). In our case, P(J)=0.5P(J)=0.5. P(F∣J) and P(I∣J) are the likelihoods. These represent the probabilities of Jill Stein saying the words 'freedom' ..
🌳AI Projects: NLP🍀✨/NLP Deep Dive
2023. 9. 11. 22:24