일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- Absolute
- AGI
- ai
- AI agents
- AI engineer
- AI researcher
- ajax
- algorithm
- Algorithms
- aliases
- Array 객체
- ASI
- bayes' theorem
- Bit
- Blur
- BOM
- bootstrap
- canva
- challenges
- ChatGPT
- Today
- In Total
목록🌳AI Learning🛤️✨/AI Answers👾 (21)
A Joyful AI Research Journey🌳😊
In Google Colab, the type of hardware accelerator you use greatly affects the performance of your computations, especially when working with machine learning and deep learning models. Below is a summary of the differences among the various hardware accelerators available in Google Colab:1. CPU (Central Processing Unit)Use Case: Suitable for general-purpose computations and light tasks.Speed: Rel..
VISION과 LLM(대형 언어 모델)은 각각의 특성과 응용 가능성이 다르기 때문에 어떤 것이 더 전망이 좋은지 단정짓기 어려운 측면이 있습니다. 다만 두 분야 모두 AI 연구 및 산업 내에서 중요한 역할을 하고 있으며, 각기 다른 장점을 가지고 있습니다. 어느 쪽이 더 전망이 좋다고 보다는, 개인적인 관심사와 커리어 목표에 따라 어느 쪽이 더 맞는지 생각하는 것이 중요합니다. 다음은 각 분야의 현재 전망과 장단점에 대한 비교입니다.VISION (컴퓨터 비전)강점과 전망물리적 세계와의 연결: 컴퓨터 비전은 이미지나 비디오 데이터를 분석하여 3D 객체 인식, 행동 인식, 공간적 이해 등을 통해 물리적 세계와의 상호작용을 가능하게 합니다. 이는 자율주행차, 로봇 공학, 의료 영상 분석 등 다양한 응용 분야에..
AI는 여러 가지 다양한 하위 분야로 구성되어 있으며, 각 분야는 특정한 문제를 해결하기 위해 고유한 기법과 응용을 가지고 있습니다. 대표적인 AI의 하위 분야는 다음과 같습니다:1. 머신 러닝 (Machine Learning)데이터를 사용해 모델을 학습하고, 패턴을 발견하거나 예측을 수행하는 분야입니다. 대표적으로 지도 학습, 비지도 학습, 강화 학습 등이 있습니다.머신 러닝은 특히 이미지 인식, 음성 인식, 추천 시스템 등에 많이 사용됩니다.2. 딥 러닝 (Deep Learning)머신 러닝의 한 하위 분야로, 인공 신경망을 사용해 복잡한 패턴을 학습합니다. CNN(합성곱 신경망), RNN(순환 신경망), 트랜스포머 등이 딥 러닝의 중요한 모델들입니다.이미지 분류, 자연어 처리, 자율 주행 등 여러 ..
Data science is not exactly a subcategory of artificial intelligence (AI), but the two are closely related and often overlap. Data science involves techniques for collecting, processing, analyzing, and interpreting large sets of data, often using statistical methods and programming. It serves as a foundation for AI by providing the data needed for training machine learning models, which are a co..
ChatGPT, OpenAICO₂ flux inversion is a method used in atmospheric science to estimate the sources and sinks of carbon dioxide (CO₂) based on observed atmospheric CO₂ concentrations. This technique combines observations of CO₂ concentrations from various platforms (such as satellites, ground stations, and aircraft) with atmospheric transport models to "invert" the observed data and deduce where C..
The data privacy mechanisms discussed are closely related to AI, particularly in the context of developing, deploying, and managing AI systems that handle sensitive or personal data. Here's how these concepts are connected to AI:1. Data EncryptionRelation to AI: AI models often require access to large datasets, which might include sensitive or personal information. Encrypting this data ensures t..
ChatGPTYes, studying computer vision is different from natural language processing (NLP), though both are subfields of artificial intelligence (AI). Here are the key differences:Computer VisionFocus: Deals with understanding and interpreting visual information from the world, such as images and videos.Techniques: Involves image processing, feature extraction, object detection, image segmentation..
In computer vision, "depth" refers to the distance between a camera and an object in the scene being captured. It represents the third dimension in a 3D space, providing information about how far away objects are from the viewpoint of the camera. This is crucial for understanding the spatial arrangement and structure of the scene.Depth information can be obtained using various techniques, includ..
ChatGPT, OpenAI Algorithms: An algorithm is a step-by-step procedure or formula for solving a problem. It's about the 'how' – how to perform a task, how to process data, how to solve a particular problem. Algorithms are used for a wide range of purposes in computer science, from data sorting and searching to complex problem-solving in various domains. They are the methods or processes followed t..
OpenAI, ChatGPT Researchers are driven by a variety of motivations, which can vary depending on their personal interests, career goals, and the nature of their work. Common motivations for researchers include: Intellectual Curiosity: Many researchers are inherently curious and have a strong desire to explore unknowns, solve puzzles, and understand complex phenomena. Advancement of Knowledge: A f..
ChatGPT, OpenAI The evolution of the data analyst role to include machine learning (ML) and deep learning (DL) capabilities has been gradual, influenced by the rapid advancements in artificial intelligence and data science. While pinpointing an exact year for this shift is challenging due to the variable pace of change across industries and regions, we can observe some key trends: Rise of Big Da..
ChatGPT, OpenAI In the field of artificial intelligence, a foundation model is defined as a type of large-scale machine learning model that is pre-trained on an extensive and diverse dataset, usually encompassing a wide variety of topics, contexts, or modalities. These models are characterized by their ability to learn general representations that can be adapted or fine-tuned for a wide range of..
ChatGPT, OpenAI For research in computer vision, a subfield of Artificial Intelligence (AI) focusing on enabling machines to interpret and understand visual data from the world, all three areas – computer science, mathematics, and statistics – play vital roles, but their importance can be contextualized as follows: Computer Science: This is highly critical in computer vision. It provides the fou..